Virial Coefficients of Multispecies Anyons
نویسندگان
چکیده
A path integral formalism for multispecies anyons is introduced, whereby partition functions are expressed in terms of generating functions of winding number probability distributions. In a certain approximation, the equation of state for exclusion statistics follows. By Monte Carlo simulation, third-order cluster and virial coefficients are found numerically.
منابع مشابه
On Thermodynamics of Multispecies Anyons
We address the problem of multispecies anyons, i.e. particles of different species whose wave function is subject to anyonlike conditions. The cluster and virial coefficients are considered. Special attention is paid to the case of anyons in the lowest Landau level of a strong magnetic field, when it is possible (i) to prove microscopically the equation of state, in particular in terms of Aharo...
متن کاملThe fourth virial coefficient of anyons
We have computed by a Monte Carlo method the fourth virial coefficient of free anyons, as a function of the statistics angle θ. It can be fitted by a four term Fourier series, in which two coefficients are fixed by the known perturbative results at the boson and fermion points. We compute partition functions by means of path integrals, which we represent diagrammatically in such a way that the ...
متن کاملOn the virial coefficients of nonabelian anyons
We study a system of nonabelian anyons in the lowest Landau level of a strong magnetic field. Using diagrammatic techniques, we prove that the virial coefficients do not depend on the statistics parameter. This is true for all representations of all nonabelian groups for the statistics of the particles and relies solely on the fact that the effective statistical interaction is a traceless opera...
متن کاملStatistical mechanics and thermodynamics for multispecies exclusion statistics
Statistical mechanics and thermodynamics for ideal fractional exclusion statistics with mutual statistical interactions is studied systematically. We discuss properties of the single-state partition functions and derive the general form of the cluster expansion. Assuming a certain scaling of the single-particle partition functions, relevant to systems of noninteracting particles with various di...
متن کاملMultispecies virial expansions
We study the virial expansion of mixtures of countably many different types of particles. The main tool is the Lagrange–Good inversion formula, which has other applications such as counting coloured trees or studying probability generating functions in multi-type branching processes. We prove that the virial expansion converges absolutely in a domain of small densities. In addition, we establis...
متن کامل